15 research outputs found

    Model based fault diagnosis and prognosis of nonlinear systems

    Get PDF
    Rapid technological advances have led to more and more complex industrial systems with significantly higher risk of failures. Therefore, in this dissertation, a model-based fault diagnosis and prognosis framework has been developed for fast and reliable detection of faults and prediction of failures in nonlinear systems. In the first paper, a unified model-based fault diagnosis scheme capable of detecting both additive system faults and multiplicative actuator faults, as well as approximating the fault dynamics, performing fault type determination and time-to-failure determination, is designed. Stability of the observer and online approximator is guaranteed via an adaptive update law. Since outliers can degrade the performance of fault diagnostics, the second paper introduces an online neural network (NN) based outlier identification and removal scheme which is then combined with a fault detection scheme to enhance its performance. Outliers are detected based on the estimation error and a novel tuning law prevents the NN weights from being affected by outliers. In the third paper, in contrast to papers I and II, fault diagnosis of large-scale interconnected systems is investigated. A decentralized fault prognosis scheme is developed for such systems by using a network of local fault detectors (LFD) where each LFD only requires the local measurements. The online approximators in each LFD learn the unknown interconnection functions and the fault dynamics. Derivation of robust detection thresholds and detectability conditions are also included. The fourth paper extends the decentralized fault detection from paper III and develops an accommodation scheme for nonlinear continuous-time systems. By using both detection and accommodation online approximators, the control inputs are adjusted in order to minimize the fault effects. Finally in the fifth paper, the model-based fault diagnosis of distributed parameter systems (DPS) with parabolic PDE representation in continuous-time is discussed where a PDE-based observer is designed to perform fault detection as well as estimating the unavailable system states. An adaptive online approximator is incorporated in the observer to identify unknown fault parameters. Adaptive update law guarantees the convergence of estimations and allows determination of remaining useful life --Abstract, page iv

    Decentralized Fault Diagnosis and Prognosis Scheme for Interconnected Nonlinear Discrete-Time Systems

    Get PDF
    This paper deals with the design of a decentralized fault diagnosis and prognosis scheme for interconnected nonlinear discrete-time systems which are modelled as the interconnection of several subsystems. For each subsystem, a local fault detector (LFD) is designed based on the dynamic model of the local subsystem and the local states. Each LFD consists of an observer with an online neural network (NN)-based approximator. The online NN approximators only use local measurements as their inputs, and are always turned on and continuously learn the interconnection as well as possible fault function. A fault is detected by comparing the output of each online NN approximator with a predefined threshold instead of using the residual. Derivation of robust detection thresholds and fault detectability conditions are also included. Due to interconnected nature of the overall system, the effect of faults propagate to other subsystems, thus a fault might be detected in more than one subsystem. Upon detection, faults local to the subsystem and from other subsystems are isolated by using a central fault isolation unit which receives detection time information from all LFDs. The proposed scheme also provides the time-to-failure or remaining useful life information by using local measurements. Simulation results provide the effectiveness of the proposed decentralized fault detection scheme

    Fault Diagnosis of Distributed Parameter Systems Modeled by Linear Parabolic Partial Differential Equations with State Faults

    No full text
    In this paper, the problem of fault diagnosis in distributed parameter systems (DPS) is investigated. The behavior of DPS is best described by partial differential equation (PDE) models. In contrast to transforming the DPS into a finite set of ordinary differential equations (ODE) prior to the design of control or fault detection schemes by using significant approximations, thus reducing the accuracy and reliability of the overall system, in this paper, the PDE representation of the system is directly utilized to construct a fault detection observer. A fault is detected by comparing the detection residual, which is the difference between measured and estimated outputs, with a predefined detection threshold. Once the fault is detected, an adaptive approximator is activated to learn the fault function. The estimated fault parameters are then compared with their failure thresholds to provide an estimate of the remaining useful life of the system. The scheme is verified in simulations on a heat system which is described by parabolic PDEs

    Decentralized Fault Tolerant Control of a Class of Nonlinear Interconnected Systems

    No full text
    In this paper, a novel decentralized fault tolerant controller (DFTC) is proposed for interconnected nonlinear continuous-time systems by using local subsystem state vector alone in contrast with traditional distributed fault tolerant controllers or fault accommodation schemes where the measured or the estimated state vector of the overall system is needed. The proposed decentralized controller uses local state and input vectors and minimizes the fault effects on all the subsystems. The DFTC in each subsystem includes a traditional controller term and a neural network based online approximator term which is used to deal with the unknown parts of the system dynamics, such as fault and interconnection terms. The stability of the overall system with the proposed DFTC is investigated by using Lyapunov approach and the boundedness of all signals is guaranteed in the presence of a fault. Therefore, the proposed controller enables the system to continue its normal operation after the occurrence of a fault, as long as it does not cause failure or break down of a component. Although the decentralized fault tolerant controller is designed mainly for large-scale systems where continuous transmissions between subsystems is not possible, it can also be applied to small-scale systems where sensor measurements are available for use in all subsystems. Finally the proposed methods are verified and compared in simulation environment

    Actuator and Sensor Fault Detection and Failure Prediction for Systems with Multi-Dimensional Nonlinear Partial Differential Equations

    No full text
    This paper presents a new model-based fault detection and failure prediction framework for a class of multi-input and multi-output (MIMO) nonlinear distributed parameter systems (DPS) described by partial differential equations (PDE) with actuator and sensor faults. The fault functions cover both abrupt and incipient faults. A Luenberger type observer is used to monitor the health of the DPS as a detection observer on the basis of the nonlinear PDE representation of the system and by utilizing only the measured output vector. By taking the difference between measured and estimated outputs, a residual signal is generated for fault detection. If the detection residual exceeds a predefined threshold, a fault is claimed to be active. Once an actuator or a sensor fault is detected, an appropriate fault parameter update law is developed to learn the fault dynamics online with the help of an additional measurement. Later, an explicit formula is introduced to estimate the time-to-failure in the presence of an actuator/sensor fault by utilizing the limiting values of the output vector along with the estimated fault parameter vector. Eventually, the effectiveness of the proposed detection and prediction framework is demonstrated on a nonlinear process

    Actuator and Sensor Fault Detection and Failure Prediction for Systems with Multi-Dimensional Nonlinear Partial Differential Equations

    No full text
    This paper presents a new model-based fault detection and failure prediction framework for a class of multi-input and multi-output (MIMO) nonlinear distributed parameter systems (DPS) described by partial differential equations (PDE) with actuator and sensor faults. The fault functions cover both abrupt and incipient faults. A Luenberger type observer is used to monitor the health of the DPS as a detection observer on the basis of the nonlinear PDE representation of the system and by utilizing only the measured output vector. By taking the difference between measured and estimated outputs, a residual signal is generated for fault detection. If the detection residual exceeds a predefined threshold, a fault is claimed to be active. Once an actuator or a sensor fault is detected, an appropriate fault parameter update law is developed to learn the fault dynamics online with the help of an additional measurement. Later, an explicit formula is introduced to estimate the time-to-failure in the presence of an actuator/sensor fault by utilizing the limiting values of the output vector along with the estimated fault parameter vector. Eventually, the effectiveness of the proposed detection and prediction framework is demonstrated on a nonlinear process

    Model-Based Actuator Fault Accommodation for Distributed Parameter Systems Represented by Coupled Linear PDES

    No full text
    A model-based fault detection and accommodation scheme is introduced for a class of distributed parameter systems (DPS) described by coupled partial differential equations (PDEs). Actuator faults at the boundary condition are considered. A detection observer is proposed based on the linear PDE representation of the DPS by assuming that the state information is available. Upon detecting a fault, an adaptive term is added to the observer to estimate the fault parameter vector which is utilized for fault accommodation by reconfiguring the control input. An update law is proposed to estimate the unknown fault parameter vector. An explicit formula is proposed to estimate the time-to-accommodation (TTA) by using the parameter vector. Finally, an example to demonstrate the effectiveness of the proposed scheme is included

    Model-Based Fault Detection, Estimation, and Prediction for a Class of Linear Distributed Parameter Systems

    No full text
    This paper addresses a new model-based fault detection, estimation, and prediction scheme for linear distributed parameter systems (DPSs) described by a class of partial differential equations (PDEs). An observer is proposed by using the PDE representation and the detection residual is generated by taking the difference between the observer and the physical system outputs. A fault is detected by comparing the residual to a predefined threshold. Subsequently, the fault function is estimated, and its parameters are tuned via a novel update law. Though state measurements are utilized initially in the parameter update law for the fault function estimation, the output and input filters in the modified observer subsequently relax this requirement. The actuator and sensor fault functions are estimated and the time to failure (TTF) is calculated with output measurements alone. Finally, the performance of detection, estimation and a prediction scheme is evaluated on a heat transfer reactor with sensor and actuator faults

    Filter-Based Fault Detection and Isolation in Distributed Parameter Systems Modeled by Parabolic Partial Differential Equations

    Get PDF
    This paper covers model-based fault detection and isolation for linear and nonlinear distributed parameter systems (DPS). The first part mainly deals with actuator, sensor and state fault detection and isolation for a class of DPS represented by a set of coupled linear partial differential equations (PDE). A filter based observer is designed based on the linear PDE representation using which a detection residual is generated. A fault is detected when the magnitude of the detection residual exceeds a detection threshold. Upon detection, several isolation estimators are designed using filters whose output residuals are compared with predefined isolation thresholds. A fault on a linear DPS is declared to be of certain type if the corresponding isolation estimator output residual is below its isolation threshold while the other fault isolation estimator output residual is above its threshold. Next, the fault location is determined when a state fault is identified. The second part of this paper focuses on fault detection and isolation of nonlinear DPS by using a Luenberger type observer. Here fault isolation framework is introduced to isolate actuator, sensor and state faults with isolability condition by using additional boundary measurements and without filters. Finally, the effectiveness of the proposed fault detection and isolation schemes for both linear and nonlinear DPS are demonstrated through simulation
    corecore